Accolade® II
Femoral Hip Stem

Design rationale
Designed to **fit** more patients, designed to **fit** your approach.
Addressing modern demands with novel technology.

The global THA population is evolving to include a younger, more active, and more demanding patient. Many femoral stem designs on the market today predate the emergence of this novel demand. Subsequently, an opportunity to enhance the conventional femoral stem design exists.

Conventional tapered wedge femoral stems have achieved popularity due to their simplicity and excellent clinical results. Despite these results, literature indicates that there are still unmet clinical needs. Incidence of subsidence, distal-only implant engagement, and peri-prosthetic fracture suggest a clinical need for an improved implant fit for this novel patient population.

Stryker, along with key industry leaders, embarked to develop a novel femoral stem. This design would build from the sound principles of tapered wedge philosophy to meet the unique needs of the current patient population. At the heart of this development was a unique technology called Stryker Orthopaedic Modeling and Analytics, or SOMA. As a system that enables population-based design, SOMA has powerful functionality with which to design, model, and analyze novel orthopaedic devices.

Stryker utilized SOMA technology to design a novel stem building upon the conventional tapered wedge femoral design, incorporating unique features to allow for an enhanced implant fit in today’s patient population. By establishing an increased canal fit and fill, Accolade II has been shown to allow for improved stability, decreased intraoperative femoral fractures, as well as excellent survivorship and functional outcomes, ultimately leading to satisfied patients.
SOMA technology

Utilizing the proprietary SOMA technology, Stryker was able to complete one of the largest proximal femoral bone morphology studies ever undertaken. An illustrated look at the process by which SOMA technology is employed in implant design is described below.

- **CT acquisition**
 - The SOMA database continues to acquire new CT scans, and currently contains over 16,500 bones.

- **Segmentation**
 - Once acquired, all bones are segmented into inner and outer cortices.

- **Analysis**
 - Using SOMA tools, bone morphology can be studied in a highly accurate and reproducible manner.

- **Design input**
 - The results of these studies, such as the population Canal Flare Index, can be utilized in implant design.

- **Validation**
 - The resulting implant design can then be validated using SOMA fitting tools.
Three key SOMA-designed features
Bone morphology data allowed Stryker an unprecedented look at femoral anatomy, and assisted in the design of a novel femoral stem. The SOMA input* was instrumental in the establishment of three key design features of Accolade II:

Unique size-specific medial curvature
increasing proximal conformity to improve primary stability\(^1^4,\)\(^1^5\)

Enhanced proximal-distal proportions\(^1^6\)
shown to mimic canal anatomy to avoid distal only engagement and achieve cortical fit\(^8,\)\(^1^6\)

Optimized stem length
enables muscle-sparing approaches without sacrificing stability\(^1^5,\)\(^1^7\)

* SOMA-design of Accolade II based on 556 CT scans.
Unique size-specific medial curvature

Initial stability is critical to long-term implant performance\(^6\). Early subsidence and micromotion has been established as a strong indicator for implant failure\(^6\). Initial stability may be increased by creating a higher conformity between the implant and the femoral cortices, leading to a larger area of contact\(^{19}\).

Analyzing the SOMA morphology study data*, it was observed that a constant medial curvature may not allow for a conforming canal fit throughout varying femoral sizes.

This population-based input influenced Stryker to incorporate the market’s first size-specific medial curvature into Accolade II. This feature was designed to enable a more conforming proximal cortical fit\(^{15}\), which has been shown to allow for improved implant stability\(^{19}\).

Using femurs from the SOMA database*, fit patterns of Accolade II can be compared to conventional tapered wedge designs. The three examples below illustrate how Accolade II achieves a more conforming canal fit throughout varying bone sizes.
Enhanced proximal-distal proportions

Distal-only engaged femoral stems can experience stress shielding\(^1\) and consequently may lead to elevated failure rates due to loosening and migration\(^9\). In order to better mimic the femoral anatomy and avoid distal-only engagement, a more anatomic implant growth rate is needed.

Utilizing the SOMA femoral morphology study*, a more anthropomorphic proximal-distal stem growth rate was identified. This rate led to enhanced implant proportions\(^\text{13}\), as the distal geometry of Accolade II increases in size less than the proximal geometry. These proportions enable Accolade II to achieve a significantly better canal fit and fill,\(^9\) and Accolade II has shown a decreased incidence of distal-only engagement\(^9\).

Comparing implant fit

In the graph above, the proximal (P) and distal (D) measurements of a population of 556 femurs were plotted (black dots) against the corresponding stem diameters of Accolade II (gold) and a conventional tapered wedge design (grey). Accolade II achieved more fully-conforming and proximal-only fit types compared to the conventional design, while subsequently reducing distal-only fit by 14\%.\(^\text{16}\)
Optimized stem length

Popularity of muscle-sparing approaches and bone conserving fundamentals have led to a trend in shortening of stem length\(^2\). However, there exists a complex relationship between stem length and implant stability\(^2\). Shortening stem length without geometry optimization has been shown to increase the potential for micromotion\(^2\), which is a strong indicator for implant failure\(^6\).

Accolade II utilized the SOMA database* and stability analyses to establish an optimized length for each stem size which not only accommodates muscle-sparing approaches\(^2\), but demonstrated improved initial stability\(^1\).

“simply shortening a standard tapered wedge design may reduce the primary stability”\(^1\)

\[\text{Mean % of HA coated stem surface that experienced micromotion >50μm}^{17} \]

- Shortened tapered wedge stem
- Conventional tapered wedge stem
- Accolade II
Designed to fit your approach

Muscle-sparing surgical approaches continue to gain popularity, due to the potential patient benefits of faster recovery\(^{21,22}\), less pain\(^{21,22}\), and greater satisfaction\(^{23}\).

Stryker’s portfolio of muscle-sparing techniques features modern instrumentation and dynamic Medical Education programs to support the Direct Anterior Approach and the Direct Superior Approach.

The new Direct Superior Approach was designed for surgeons who prefer the fundamentals and familiarity of the posterior approach, but seek to provide the next evolution in muscle-sparing THA surgical techniques for their patients.

Stryker has developed a training platform to help surgeons during the learning curve of a new surgical approach, Stryker’s Training Academy.

For access to Stryker’s Training Academy, contact your local Stryker sales representative.
Clinical performance

“Significantly better overall canal fit”\(^9\) than conventional tapered wedge design

over

400,000
implanted worldwide\(^{24}\)

over

16,500
bones*

in Soma database\(^{14}\)

99.2% survivorship for Accolade II pursuant to a 3.5-year mean study\(^{12}\)

less than

0.1 mm subsidence pursuant to

2-year RSA study\(^{10}\)

5x less intraoperative fractures observed compared to conventional tapered wedge\(^{11}\)
Accolade II femoral hip stem | Design rationale

- Proportional neck lengths
- Dual offset options for every size
- Size specific medial curvature
 - Match to diverse patient population
 - Accomodates variation in bone morphology
- Utilizing soma, optimize fit
- Purefix HA coating
- Titanium plasma spray
- 12 body sizes
- Optimizes length w/o compromising stability
Accolade II Implant catalog numbers

<table>
<thead>
<tr>
<th>Part number</th>
<th>Size</th>
<th>Neck angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>6720-0027</td>
<td>0</td>
<td>132°</td>
</tr>
<tr>
<td>6720-0127</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6720-0230</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6720-0330</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6720-0435</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6720-0535</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6720-0635</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6720-0737</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6720-0837</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6720-0937</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6720-1040</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6720-1140</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part number</th>
<th>Size</th>
<th>Neck angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>6721-0027</td>
<td>0</td>
<td>127°</td>
</tr>
<tr>
<td>6721-0127</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6721-0230</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6721-0330</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6721-0435</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6721-0535</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6721-0635</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>6721-0737</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6721-0837</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6721-0937</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6721-1040</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6721-1140</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

References:

*SOMA-design of Accolade II based on 556 CT scans.

A surgeon must always rely on his or her own professional clinical judgment when deciding whether to use a particular product when treating a particular patient. Stryker does not dispense medical advice and recommends that surgeons be trained in the use of any particular product before using it in surgery.

The information presented is intended to demonstrate the breadth of Stryker’s product offerings. A surgeon must always refer to the package insert, product label and/or instructions for use before using any of Stryker’s products. Products may not be available in all markets because product availability is subject to the regulatory and/or medical practices in individual markets. Please contact your sales representative if you have questions about the availability of any of Stryker’s products in your area. Stryker Corporation or its divisions or other corporate affiliated entities own, use or have applied for the following trademarks or service marks: Accolade, SOMA, Stryker. All other trademarks are trademarks of their respective owners or holders.

325 Corporate Drive
Mahwah, NJ 07430

t: 201.831.5000

www.stryker.com