

stryker

Omega3 System Compression Hip Screw

Operative Technique

- Hip Fracture
- Axially Stable Locking Option

Contents

Omega3 Compression Hip Screw Operative Technique

Introduction	4
Potential Features & Benefits	5
Relative Indications & Contraindications	7
Preoperative Planning	8
Patient Positioning	9
Skin Incision	10
Guide Pin Insertion	11
Guide Pin Measurement	14
Anti-Rotation Guide Pin Insertion	15
Combination Reamer Assembly Instructions	16
Femoral Head / Neck Reaming	17
Tapping for Lag Screw	18
Lag Screw Tap Assembly	18
Lag Screw Instrument Assembly Instructions	19
Lag Screw Insertion	20
Omega3 Hip Plate Insertion	21
Omega3 Hip Plate Fixation with	
Standard Cortical Screws	22
Omega3 Hip Plate Fixation with Axial Stable	
Locking Screws	23
Extraction of Locking Inserts	28
Option: One-Step Lag Screw and Hip Plate Insertion	29
Fracture Compression	31
Closing the Wound	32
Implant Removal	32

Ordering Information

Instruments for Basic Lag Screw Set	33
Locking Instruments	35
Optional Instruments	36
Omega3 Keyed Hip-Plates	37
Omega3 Keyless Hip-Plates	38
Lag Screws	39
Compression Screw	39
Cortical Screws Ø4.5mm	40
Locking Screws Ø5.0mm and Locking Insert	40
Cancellous Screws Ø6.5mm	41
Asnis™ III Screws Ø6.5mm	41

Potential Features & Benefits

Omega3 Low Profile Hip Plate

- Available in both Standard Barrel (38mm) and Short Barrel (25mm) styles and a full range of sizes and angles.
- Hip Plate barrel accepts the Omega Plus Lag Screws or Hansson[™] Twin Hook.
- In addition to 4.5mm Cortical Screws, all sideplate holes accept 6.5mm Cancellous Screws or Asnis III 6.5mm Cannulated Screws for additional stabilization.
- The Hip Plate allows for 5.0mm Locking Inserts used in combination with 5.0mm Locking Screws for angular stable fixation.
 Bi-directional shaft holes increase the fixed angled construct.
 Innovative Locking Screws are guided into the plates, thus reducing potential for cross- threading and coldwelding.
- Tapered plate allows for easier slide in when used in minimal invasive technique with short incision.

Locking Insert

Locking Screw

Omega3 Lag Screw Options

13mm Standard Lag Screw

• Leading edge of the cutting thread engages quickly, with or without tapping, and provides tactile control during final positioning.

15mm Super Lag Screw

• Provide excellent resistance to migration in case of osteoporotic bone.

Introduction

The Omega 3 Compression

Hip Screw is a unique and innovative system reflecting the long experience of Stryker Osteosynthesis in the treatment of hip fractures.

This modular system offers the surgeon a wide choice of slimlined hip plates combined with a unique option of cephalic implants and state of the art instrumentation.

The system provides a simple and easyto-use solution for surgeons facing hip fractures.

The Omega3 Hip Fracture System denotes the new locking technique for the hip plate shaft holes. Only the Omega3 Hip Plates offer the possibility to apply 5.0mm Locking Inserts and Locking Screws in the plate diaphysis as well as standard 4.5mm Cortical Screws, 6.5mm Cancellous Screws and Asnis III Cannulated Screws.

To apply Locking Inserts and Locking Screws to the Omega3 Hip Plate, the appropriate locking instrumentation is available in the optional locking instrument set.

All Omega2 instruments are compatible with the Omega3 Hip Plates

Types of screws compatible with Omega Plates

Screw type	OmegaPlus	Omega2	Omega3
Ø4.5mm Cortical Screws	4	4	4
Ø6.5mm Cancellous Screws	4	4	4
Ø6.5mm Asnis [™] III Cannulated Screws	4	4	4
Ø5.0mm Locking Inserts and Screws	6	6	4

5

Relative Indications & Contraindications

Relative Indications

The Omega3 System is indicated for fractures of the proximal femur which may include:

• Trochanteric fractures and subtrochanteric fractures

Note: When treating subtrochanteric fractures with Omega3 Hip Plates, the length of the Hip Plate has to be chosen according to the fracture situation. An intramedullary device like the Gamma3 Long Nail may be an option for the treatment of subtrochanteric fractures.

 Intracapsular and basal neck fractures

Note: When using the Omega3 Lag Screw System, if there is rotational instability, it is recommended that an Asnis III 6.5mm Cannulated Screw or Hansson[™] Pin be added to stabilize the fracture. Please refer to page 15 (Fig. 21).

Relative Contraindications

The surgeon's education, training and professional judgement must be relied upon to choose the most appropriate device and treatment. Conditions presenting an increased risk of failure include:

- Any active or suspected latent infection or marked local inflammation in or about the affected area.
- Compromised vascularity that would inhibit adequate blood supply to the fracture or the operative site.
- Bone stock compromised by disease, infection or prior implantation that can not provide adequate support and/or fixation of the devices.
- Material sensitivity, documented or suspected.

- Obesity. An obese patient can produce loads on the implant that can lead to failure of the fixation of the device or to failure of the device itself.
- Patients having inadequate tissue coverage over the operative site.
- Implant utilization that would interfere with anatomical structures or physiological performance.
- Any mental or neuromuscular disorder which would create an unacceptable risk of fixation failure or complications in postoperative care.

• Other medical or surgical conditions which would preclude the potential benefit of surgery.

Detailed information are included in the instructions for use being attached to and shipped with every implant.

See package insert for a complete list of potential adverse effects and contraindications. The surgeon must discuss all relevant risks, including the finite lifetime of the device, with the patient, when necessary.

Caution: Bone Screws are not intended for screw attachment or fixation to the posterior elements (pedicles) of the cervical, thoracic or lumbar spine.

Potential Features & Benefits

Cephalic Implant Option

Twin Hook

Minimized disruption

• The smooth profile of the implant allows the Twin Hook to slide into place without turning or hammering, minimizing dislocation of the fragments.

Preserved bone integrity

- Minimum disruption to cancellous bone.
- Full bone / implant surface contact for excellent stability.

Reduced invasive surgery

• The complete procedure may be carried out through a 4 to 6cm skin incision. This can reduce bleeding, tissue destruction, operative time, and may help to limit post-operative pain and rehabilitation time.

Simple and atraumatic removal procedure

• The Twin Hook can be removed or exchanged through a 10mm skin incision without need to remove the plate, reducing the trauma for the patient.

Please contact your local Stryker representative for more information about the Twin Hook and it's minimally invasive operative technique.

Accurate angle guides:

- Radiolucency (Fig. 1) of the angle guide body to precisely position the instrument, and therefore the Guide Pin.
- Multiple guide pin holes (Fig. 3) for accurate placement of the Guide Pin without need to move the instrument.
- Variable Angle Guide (Fig. 4) with "freehand" technique option.
- Stiff CoCr Ø2.8mm Guide Pin (Fig. 2) for reduced deflection. Available also with quick coupling for increased interface between the power tool and the Guide Pin.

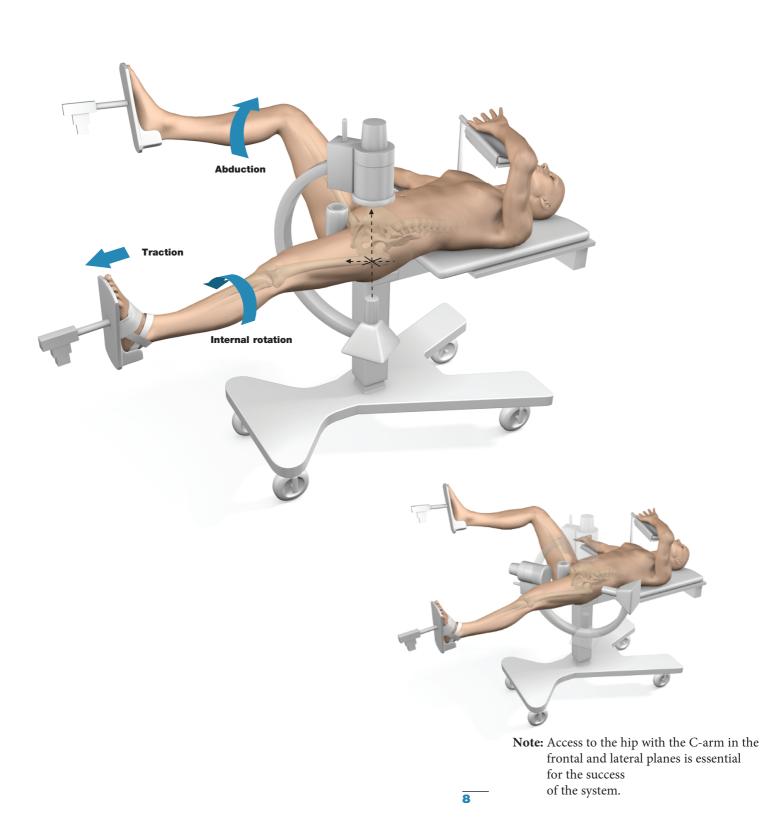
Fig. 2

- Compatibility with the Stryker AxSOS[™] Locking Plate System.
- Layout of the trays sequenced according to the surgical technique.

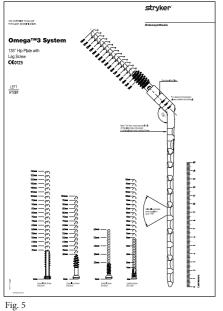
Fig. 1

Fig. 4

Fig. 3


Patient Positioning

The patient is placed supine on the fracture table with the hip extended, adducted and slightly rotated inwards, until the patella is in a position parallel to the ground.


Satisfactory access to the hip with the C-arm in the frontal and lateral planes is verified.

The fracture is reduced as anatomically as possible by longitudinal traction, adduction and internal rotation on a fracture table.

Any inferior "sagging" at the fracture site seen on the lateral view should be corrected by elevating the fracture from posterior, prior to fixation. In unstable fractures, Guide Pins can be placed in order to stabilize the reduced fragments.

Preoperative Planning

Review the frontal and lateral X-Rays of the pelvis and injured femur prior to surgery to assess fracture stability, bone quality, as well as neck-shaft angle and to estimate plate length required.

Tip: Use templates (Fig. 5) praeoperatively to plan plate angle, plate length, barrel length, and Lag Screw length.

The Lag Screw should be centered in the head on both anterior-posterior and lateral views, within 10 millimeters of subchondral bone. Application of the template to an X-Ray of the uninvolved hip may help simulate reduction of the fractured hip.

Preoperative X-Ray Templates for Omega3 System

REF	Description:
981120	Omega3 X-Ray Template Lag Screw 130 deg.
981121	Omega3 X-Ray Template Lag Screw 135 deg.
981122	Omega3 X-Ray Template Lag Screw 140 deg.
981123	Omega3 X-Ray Template Lag Screw 145 deg.
981124	Omega3 X-Ray Template Lag Screw 150 deg.
981125	Omega3 X-Ray Template Hansson Twin Hook 130 deg.
981126	Omega3 X-Ray Template Hansson Twin Hook 135 deg.
981127	Omega3 X-Ray Template Hansson Twin Hook 140 deg.
981128	Omega3 X-Ray Template Hansson Twin Hook 145 deg.
981129	Omega3 X-Ray Template Hansson Twin Hook 150 deg.
981130	Omega3 X-Ray Template Supracondylar Plate 95 deg.

982906 Omega3 X-Ray Template Folder, empty. (Note: for the storage of the above mentioned X-Ray templates)

Guide Pin Insertion

Orientation and placement of the Guide Pin is one of the most critical steps in this procedure.

By utilizing one or more of the following visual landmarks, correct positioning of the Guide Pin can be achieved.

With the Guide Pin placed at 135° angle, the pin crosses the lateral cortex at the level of the lesser trochanter (Fig. 7 & 8); at the insertion of the gluteus maximus at the posterolateral edge of the femur; or two fingerbreadths (2.5 to 3.5cm) below the crest of the greater trochanter at the origin of the vastus lateralis.

For each 5° change in hip plate angle, the Guide Pin insertion point will be moved approximately 5mm distally (for increased angle) or proximally (for decreased angle).

The Fixed Angle Guide corresponds to the barrel plate angle. Angles of 130°, 140°, 145° or 150° may be guided using the Variable Angle Guide.

In the following description of the operative technique the most common used 135° CCD is shown in the procedure.

A Variable Angle Guide (Fig. 9) in conjunction with an T-Handle can be used to insert the guide pin at 130°, 135°, 140°, 145° and 150°.

Note: The Angle Guides are radiolucent (Fig. 10) to help the correct positioning of the Angle Guide and the Guide Pin under image intensifier (helpful when a reduced skin incision is performed and direct visibility of the site is therefore reduced).

Note: Be sure to verify that the set angle is not changed when the Variable Angle Guide is touching soft tissue. This may occur when used in minimal invasive approach the incision is made too small.

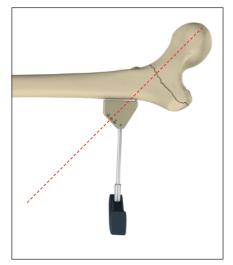
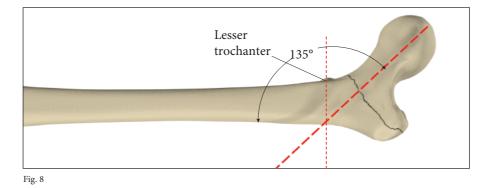
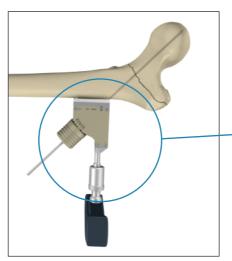




Fig. 7 Fixed Angle Guide for Guide Pin Placement

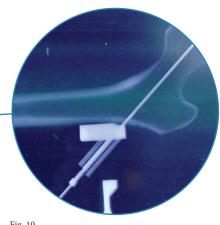
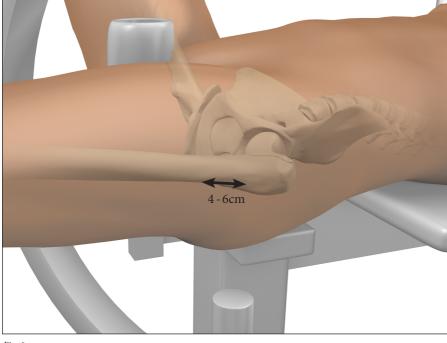



Fig. 9 Variable Angle Guide for Guide Pin Placement or Angle Measurement when the Guide Pin is inserted in "free hand technique" Fig. 10

Skin Incision

A 4 to 6 centimetre incision is made, starting at the tip of the greater trochanter and continuing straight distally. Depending on the indication, choice of plate length or minimal invasive technique the skin incision may be chosen shorter or longer (Fig. 6).

The incision is continued through the subcutaneous tissue and tensor fascia lata in line with the skin incision.

Guide Pin Insertion, continued

"Freehand" technique for Guide Pin placement:

Place a 2.8mm Guide Pin anterior to the neck of the femur (Fig. 15) and align it in the center of the head against the medial cortex by using image intensification.

A 3.2mm Drill Bit can be used to make an opening in the lateral cortex, allowing for easy insertion of the Guide Pin. Using image intensification, the Guide Pin is advanced until it reaches the subchondral bone in the femoral head. After confirming appropriate tip position of the Guide Pin on both frontal and lateral views, verify the appropriate plate angle by using the Variable Angle Guide. To unlock the mechanism, pull the cylinder of the guide (Fig. 16) and turn it by 90° (Fig. 17).

Slide the Variable Angle Guide over the Guide Pin and adjust it down to the lateral aspect of the femur (make sure that all the spikes are in contact with the bone shaft). The arrow on the cylinder will indicate at which angle the Guide Pin has been inserted (Fig. 18), and therefore the angle of the barrel plate to be selected.

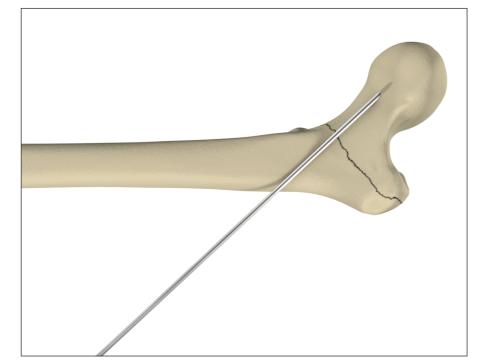


Fig. 15 Guide Pin anterior to the neck of the femur

Note: Be sure to verify that the set angle is not changed when the Variable Angle Guide is touching soft tissue. This may occur when the incision is made too small.

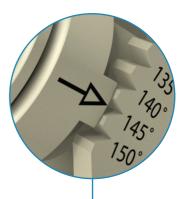


Fig. 16

Fig. 17

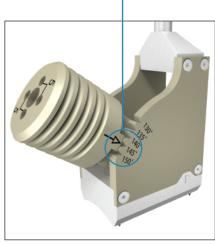


Fig. 18

Guide Pin Insertion, continued

Frontal view

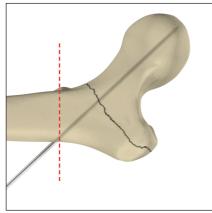


Fig. 11 A/P View

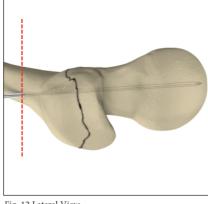


Fig. 12 Lateral View

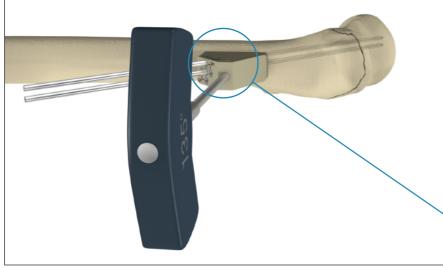


Fig. 13 Optional: Correction of Guide Pin placement possible using an additional Guide Pin: Lateral View

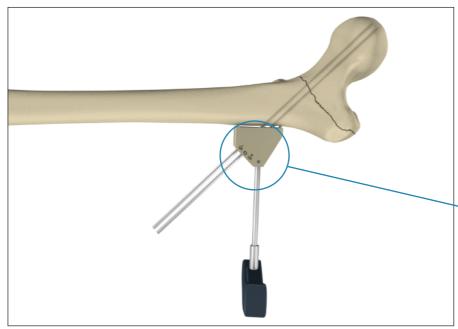
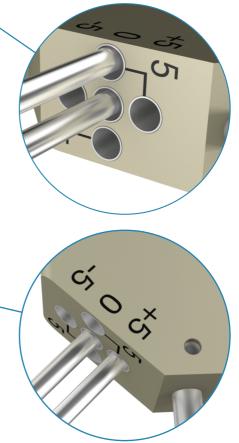



Fig. 14 Optional: Correction of Guide Pin placement possible using an additional Guide Pin: AP View

While holding the appropriate angle guide firmly on the femoral shaft, the 2.8mm Guide Pin is inserted in the hole of the angle guide and advanced into the femoral head under image intensification until it reaches the subchondral bone in the center of the femoral head in both frontal and lateral views (Fig. 11 & 12).

If the Guide Pin is not positioned correctly, an additional pin can be inserted 5mm above or below the central position in the frontal plane, and 5mm anteriorly or posteriorly to the central position in the lateral plane, without removing the first Guide Pin (Fig. 13 & 14).

Note: To insert a second pin near the first one, use a Quick Coupling Chuck for 2.8mm Guide Pin (REF 704027) together with a 2.8mm Guide Pin with quick coupling fitting (REF 704012S), otherwise there is a risk that the power drill chuck will touch the first Guide Pin.

Anti-Rotation Guide Pin Insertion

The Guide Pin Replacement Instrument can also be used to insert a second Guide Pin parallel to the primary Guide Pin, depending on the fracture pattern (Fig. 20). The Guide Pin for the Lag Screw must be placed in an inferior position to allow space for placement of a second pin or screw, if the femoral neck is narrow.

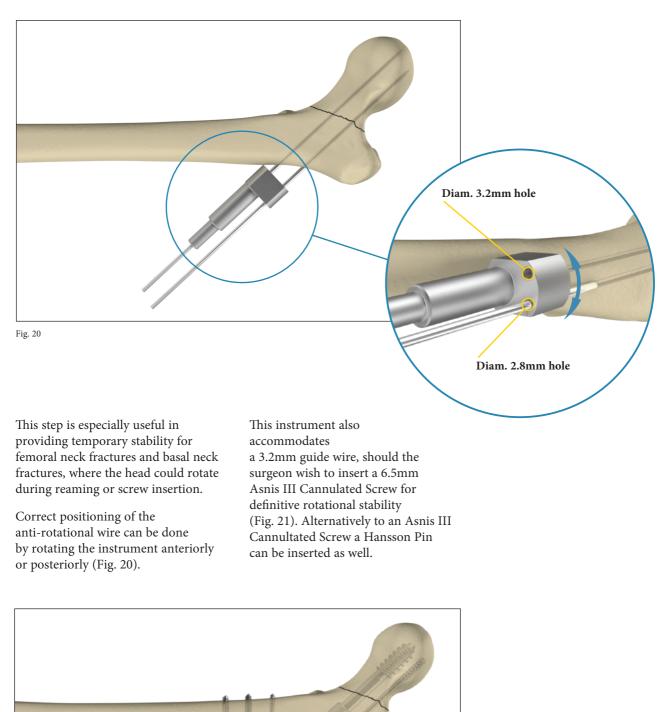


Fig. 21

Guide Pin Measurement

Fig. 19

Example without compression:

- Depth Gauge measurement: 110mm
- Reamer depth setting: **100mm**
- Omega Plus Lag Screw length selected: 100mm

Example with 5mm compression:

- Depth Gauge measurement: 110mm
- Reamer depth setting: 100mm
- Desired Compression: 5mm
- Omega Plus Lag Screw length selected: 95mm

The Depth Gauge indicates the exact length of the Guide Pin which has been inserted into the bone (Fig. 19). The surgeon must decide the depth to which the Lag Screw will be inserted.

The reaming depth is recommended to be approximately 10mm shorter than the Depth Gauge reading to permit the correct tip-apex distance.

How to select the correct length of the Lag Screw when applying compression:

The fracture must first be reduced anatomically. Compression may enhance the reduction but does not replace it.

Intra-operatively, once the femoral neck channel has been reamed, the surgeon must use image intensification to judge the amount of compression required.

The compression is limited firstly by the length of the Compression Screw threads (10mm) and secondly by the length of the Lag Screw chosen. The Lag Screw must be shorter than the reamed channel by the number of mm of compression required.

If, following the compression, a surgeon sees on the X-Ray that further compression is necessary but impossible due to the length of the implant and Compression Screw, he must remove the implant and choose a shorter length Lag Screw. **Any attempt to force compression can result in breakage of the Compression Screw.**

Femoral Head / Neck Reaming

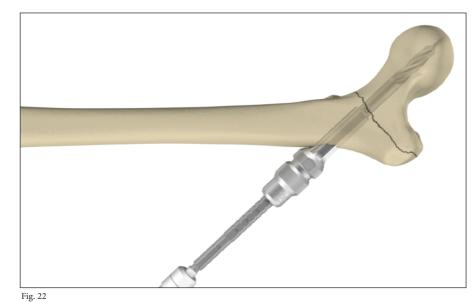
Select and assemble the correct Barrel Reamer (according to the standard or short barrel plate selected).

The Combination Reamer is set and locked by firmly turning the Stop Sleeve counter-clockwise at the predetermined depth setting (approximately 10mm less than the Guide Pin measurement).

Ream over the Guide Pin with the Combination Reamer until the stop reaches the lateral cortex (Fig. 22).

Remove the Combination Reamer while still reaming clockwise, in order to remove debris from the reamed canal.

Note: Guide Pins are not intended for re-use.


They are for single use only. Guide Pins may be damaged or bent during surgical procedures. If a Guide Pin is re-used, it may become lodged in the drill and could be advanced into the pelvis, damaging large blood vessels or vital organs.

Should the guide pin be inadvertently withdrawn, reverse the Guide Pin Replacement Instrument (Fig. 23), insert it into the femur, and reinsert the Guide Pin (Fig. 24).

Note for short barrel plates:

For more lateral intertrochanteric fractures or medial displacement osteotomies, the short barrel plates provide fixation without the barrel crossing the fracture.

Reaming is accomplished using the Short Barrel Reamer, following the same procedure for standard barrel reaming.

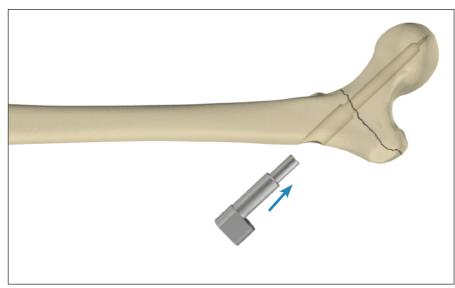


Fig. 23

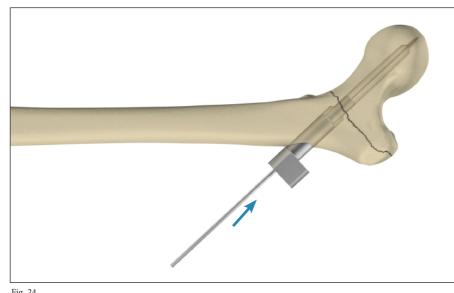
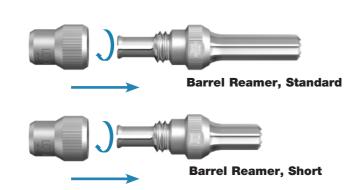



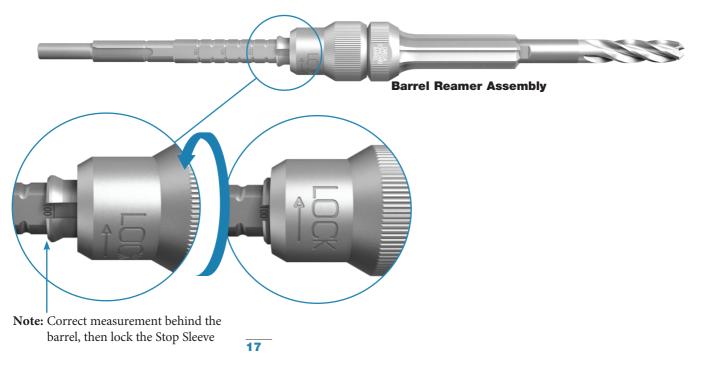
Fig. 24

Combination Reamer Assembly Instructions

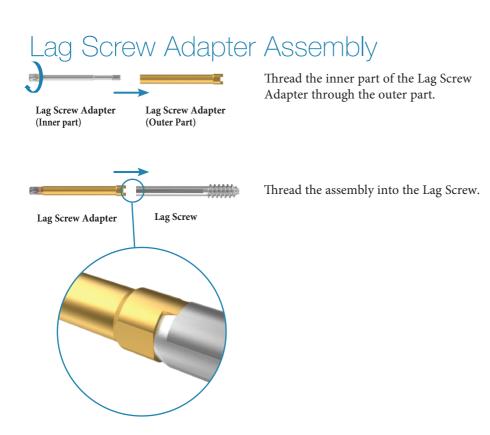
Step 1

Select and assemble the Barrel Reamer. Note: Choose the corresponding Barrel Reamer, i.e. Standard Barrel Reamer for Omega3 Plate with Standard Barrel, or the Short Barrel Reamer for Omega3 Plate with Short Barrel. The Stop Sleeve must be threaded until a mechanical stop is felt.

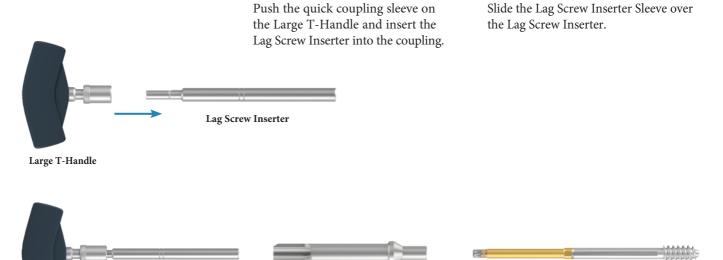
Step 2


Align the flat side of the Barrel Reamer to the flat side of the Combination Reamer Drill, and engage the Barrel Reamer over the coupling end of the Combination Reamer Drill.

Note: Flat sides must be aligned

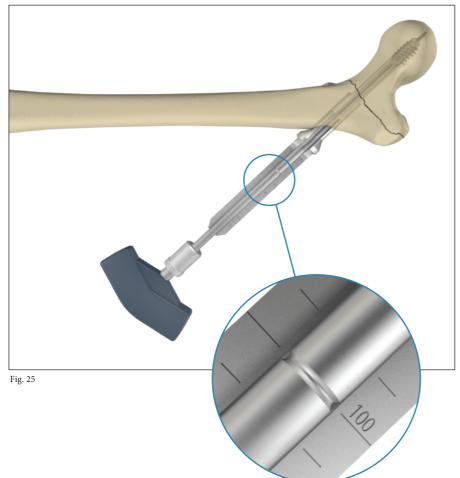

Align flat sides

Step 3


Slide the Barrel Reamer until the stop has been adjusted to the correct measurement behind the barrel. Lock the Barrel Reamer by turning the Stop Sleeve counter-clockwise until the Barrel Reamer is fixed to the Combination Reamer Drill.

Lag Screw Instrument Assembly Instructions

Lag Screw Inserter Assembly



Lag Screw Inserter Sleeve

18

Lag Screw Adapter Assembly

Tapping for Lag Screw

The Lag Screw Tap should be used when good quality, dense bone is encountered; the Calibrated Tap Sleeve indicates the proper depth of the Tap.


The Tap is advanced until the indicator ring on the Tap reaches the correct depth marking on the Centering Sleeve (Fig. 25).

Note: If significant torque is required to tap very dense bone, consideration should be given to placing an antirotation guide-wire.

Example:

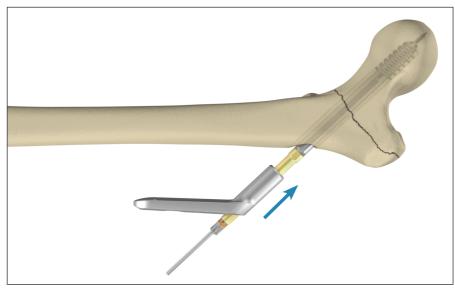
- Depth Gauge measurement: 110mm
- Reamer depth setting: 100mm
- Tapping depth: **100mm**
- Lag Screw length selected: 100mm

Lag Screw Tap Assembly

Large T-Handle

Omega3 Hip Plate Insertion

Upon completion of Lag Screw insertion, the Lag Screw Inserter assembly is removed from the Lag Screw by pulling back, leaving the Lag Screw Adapter in place.


The selected Omega3 Hip Plate is now placed over the Lag Screw Adapter and advanced to engage the Lag Screw (Fig. 28).

Impaction of the fracture may be accomplished by using the Plate Impactor together with a hammer or mallet (Fig. 29).

Note: Use gentle hammering only otherwise the impactor may be destroyed.

Unscrew the Lag Screw Adapter by hand and remove it. Then, remove the 2.8mm Guide Pin.

Note: All Guide Pins are for single use and therefore must be discarded at the end of the surgical procedure.



Fig. 29

Lag Screw Insertion


Fig. 26

Fig. 27

Depth Indicator Rings

Depth indicator rings measure desired compression.

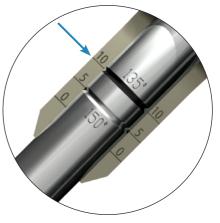
No Compression, in case of 135° plate

For valgus anatomy (150° head/neck angle), advance the Lag Screw Inserter Assembly until the ring marked "150°" reaches the zero mark on the inserter.

For typical anatomy (135° head/neck angle), advance the Lag Screw Inserter Assembly until the ring marked "135°" reaches the zero mark on the Inserter.

5mm Compression, in case of 135° plate

Center the sleeve corresponding to the amount of compression desired. Select a Lag Screw of the appropriate length and assemble it to the Lag Screw Adapter. Join the Lag Screw Inserter Assembly to the Lag Screw Adapter Assembly. Insert the Lag Screw into the bone over the Guide Pin.


The Centering Sleeve on the Inserter Assembly is advanced into the pre-reamed hole, and the Lag Screw is driven into the prepared channel.

Advance the Lag Screw by turning and pushing the T-handle clockwise to its final position.

Depth of insertion of the Lag Screw is determined by observing the two depth indicator rings on the inserter (Fig. 26).

The T-Handle of the insertion/ extraction wrench is aligned with the long axis of the femur in preparation for placement of the Hip Plate (Fig. 27).

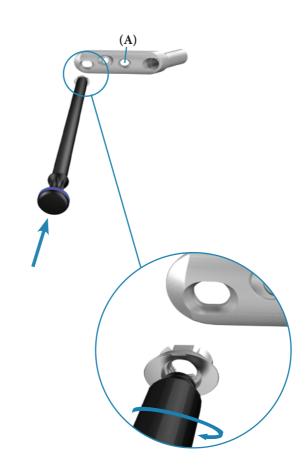
Note: In this manner, the "flats" of the Lag Screw are in proper alignment with the barrel of the hip plate for the keyed system.

10mm Compression, in case of 135° plate

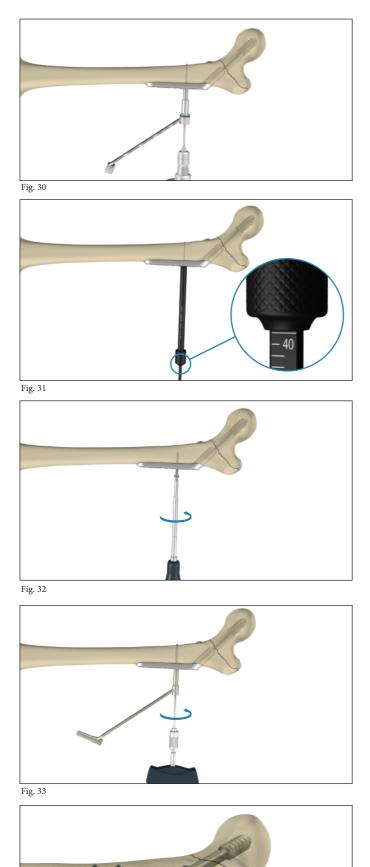
Omega3 Hip Plate Fixation with Axial Stable Locking Screws

The shaft of the Omega3 Hip Plate is designed to accept Ø 4.5mm Standard Cortical Screws for neutral or compression plate attachment to the femoral bone according to standard technique described in this operative technique (page 22). Alternatively, Ø 5.0mm Locking Inserts

and Ø 5.0mm Locking Screws may be preferred for axial stable locking in patients with poor bone quality or to perform minimal invasive surgery with a shorter plate.


Locking Inserts and Screws may be used in conjunction with Standard

Cortical Screws on the same hip plate. However, Standard Cortical Screws may not be used in the Locking Inserts. Also it is mandatory to utilize the instrumentation designed specifically for the Locking Inserts and Screws.


Step 1 Locking Insert Placement: Option1: Placement of the Locking Insert before Implantation of the Hip Plate

Before placing the Hip Plate over the Lag Screw onto the bone, thread a 5.0mm Locking Insert to the Inserter Instrument and push the Locking Insert into the chosen shaft hole of the Omega3 Hip Plate.

- **Note:** The first, most proximal hole of the plate does not accept a Locking Insert (**A**). A 4.5mm or 6.5mm bone screw always has to be used to align and advance the Hip Plate to the bone.
- Note: Make sure that the Locking Insert is completely pushed into the shaft hole. Unthread the Inserter. Repeat this procedure with each hole you want to put a Locking Insert with Locking Screws.
- **Note:** Do not attempt to push Locking Inserts into the plate holes with the Drill Sleeve.

Omega3 Hip Plate Fixation with Standard Cortical Screws

The Omega3 System allows for two alternatives of plate fixation: **1.** Fixation with 4.5mm Cortical Screws. **2.** Axial stable fixation with 5.0mm Locking Inserts and Locking Screws. For axial stable fixation with Locking Inserts and Locking Screws please refer to the section on page 23. For Standard 4.5mm Cortical Screw fixation please follow the steps described below.

Using standard cortical screw insertion technique, fix the Omega3 Hip Plate to the femoral shaft beginning at the proximal end of the plate.

Note: When using the reduced skin incision technique, supplementary stab incisions can be performed for distal screw placements.

Use the drill bit through the drill sleeve with the green ring (Neutral) assembled to the Drill Guide Handle, to drill the bone screw holes (Fig. 30).

Note: If necessary it is possible to obtain compression of a shaft fracture or osteotomy site when using the drill sleeve with the yellow ring (1mm compression).

Determine appropriate Cortical Screw length using the Depth Gauge (Fig. 31). Always select a screw length one size longer in order to ensure the optimal bi-cortical purchase.

Insert the self tapping screw using the 3.5mm Hex Screwdriver with T-handle (Fig. 32).

Option

A 4.5mm Tap is available, to pre-tap in extremely hard cortical bone. It is recommended to use the Tap in conjunction with a sleeve, if soft tissue is close to the Tap (Fig. 33).

Antero-lateral view of the Omega3 Hip Plate fixed with Standard 4.5mm Cortical Screws (Fig. 34).

Omega3 Hip Plate Fixation with Axial Stable Locking Screws, continued

Step 2 Cortical Screw Insertion:

Perform Cortical Screw insertion in the first, most proximal hole according to the description on page 22 (Fig. 38).

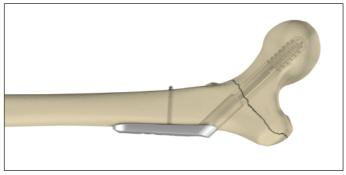


Fig. 38

Step 3 Apply Drill Sleeve:

Thread the Drill Sleeve into the Locking Insert to expand its base within the plate hole, thus securing it.

For easier alignment, first push the Drill Sleeve down towards the plate and then rotate it to engage the thread (Fig. 39).

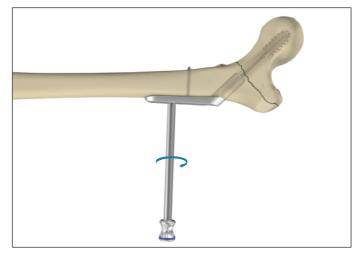


Fig. 39

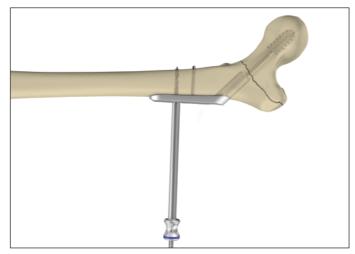


Fig. 40

Step 4 Drill:

Drill through both cortices of the femoral shaft using the 4.3mm Drill Bit attached to power (Fig. 40).

Omega3 Hip Plate Fixation with Axial Stable Locking Screws, continued

Fig. 35

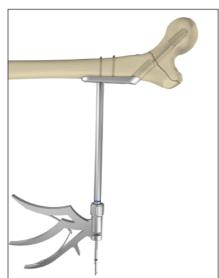


Fig. 36

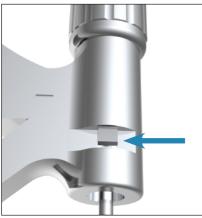


Fig. 37

Option2: Placement of the Locking Insert after Implantation of the Hip Plate (in situ):

If desired, a Locking Insert can be applied in a compression hole in the shaft of the plate intra-operatively (in situ) by using the Locking Insert Forceps, Holding Pin and Guide for Holding Pin.

When choosing this option, first implant the Hip Plate according to the description on page 22, perform a Cortical Screw insertion in the most proximal hole to advance the plate to the bone and then continue as described below with the Locking Inserts and Locking Screws.

First, the Holding Pin is inserted through the chosen hole using the Drill Sleeve for Holding Pin (Fig. 35). It is important to use the Guide as this centers the core hole for Locking Screw insertion after the Locking Insert is applied. After inserting the Holding Pin bi-cortically, remove the Guide.

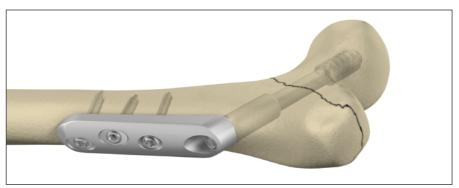
Next, place a Locking Insert on the end of the Forceps and slide the instrument over the Holding Pin down to the hole. Last, apply the Locking Insert by triggering the forceps handle. (Fig. 36).

Push the button on the Forceps to remove the device (Fig. 37). At this time, remove the Holding Pin.

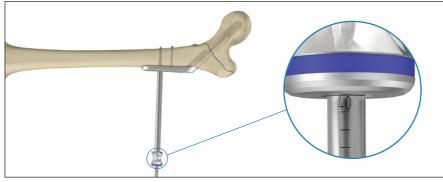
Omega3 Hip Plate Fixation with Axial Stable Locking Screws continued

Step 6 Screw Insertion:

Insert the Locking Screw into the Locking Insert, using the Screwdriver T20, AO fitting assembled with the Torque Limiter and the T-Handle, medium. Alternatively the Screwdriver T20, AO fitting can be used under direct power. However, final tightening always must be done manually.


The Locking Screw is adequately tightened when the Torque Limiter clicks at least once at the end of manual tightening (Fig. 43).

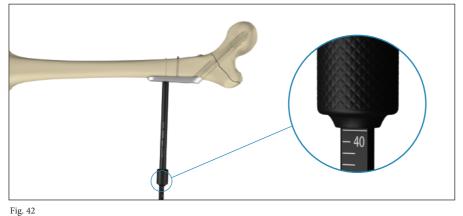
Note: The Torque Limiter is crucial to the mechanical integrity of the construct.



Antero-lateral view of the Omega3 Hip Plate fixed with Lag Screw and axial stable Locking Inserts and Locking Screws (Fig. 44).

Omega3 Hip Plate Fixation with Axial Stable Locking Screws, continued

Step 5 Screw Measurement:


Measure the required screw length by one of the two possibilities:

Option 1:

Measuring off the drill, using the calibrations marked on the drill (Fig. 41).

Note: Always select a screw length one size longer than measured, in order to ensure the optimal bi-cortical purchase.

Fig. 41

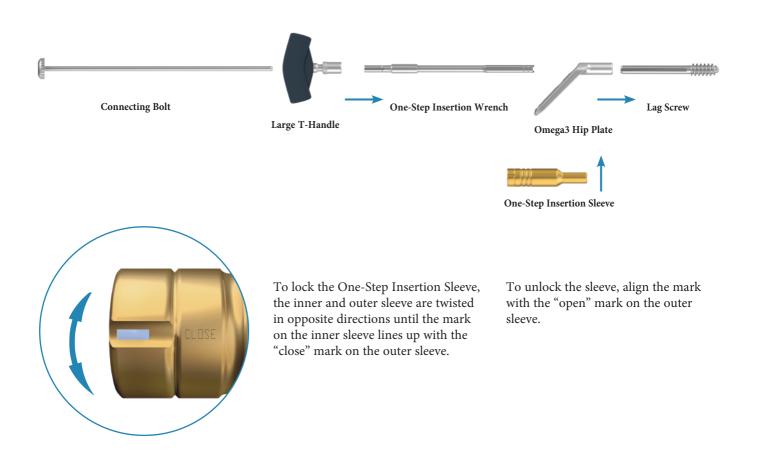
Option 2:

Conventional direct, using the locking technique Direct Measuring Gauge through the Locking Insert and across both cortices (Fig. 42).

Note: Always select a screw length one size longer than measured in order to ensure the optimal bi-cortical purchase.

0

Option: One-Step Lag Screw and Hip Plate Insertion


As an option to the standard technique, the One-Step Insertion Instruments may be used to insert the Hip Plate and the Lag Screw in a one-step procedure.

Instrument Assembly Instructions

Assemble the Large T-Handle to the One-Step Insertion Wrench as described in instruction below. Slide the One-Step Insertion Wrench through the barrel of the Hip Plate.

Prior to assembling the One-Step Insertion Sleeve to the One-Step Insertion Wrench/Hip plate assembly, ensure that the One-Step Insertion Sleeve is opened (mark on the inner sleeve lining up with the "open" mark on the outer sleeve). The Connecting Bolt is inserted through the Large T-Handle and threaded into the Lag Screw.

Assemble the One-Step Insertion Sleeve to the One-Step Insertion Wrench between the Hip Plate and the Lag Screw, and lock the One-Step Insertion Sleeve.

Extraction of Locking Inserts

Fig. 46

Should removal of a Locking Insert be required then the following procedure should be used:

Step 1: Thread the central portion (Fig. 45) of the Extractor into the Locking Insert until it is fully seated.

Step 2: Turn the outer collet (Fig. 46) clockwise until it pulls the Locking Insert out of the plate.

Step 3: Remove the Locking Insert from the Extractor by threading it back onto the Locking Inserts Rack.

Note: Discard the Locking Insert as it cannot be reused.

Fig. 45

Fracture Compression

When all screws are inserted and tightened, and all traction is released, fracture compression can be accomplished by means of the Compression Screw (Fig. 50).

Caution should be used when applying compression. The Compression Screw exerts a powerful force that must be correlated with the quality of the bone.

The compression is limited firstly by the length of the compression screw threads (10mm) and secondly by the length of the implant chosen. The implant must be shorter than the reamed channel by the number of mm of compression required.

See example on page 14 and 20.

If, following the compression, a surgeon sees on the X-Ray that further compression is necessary but impossible due to the length of the implant and compression screw, he must remove the implant and choose a shorter length implant.

Any attempt to force compression can result in breakage of the compression screw.

The Compression Screw can also be used to protect the inner thread of the Lag Screw against soft tissue ingrowth, and it also prevents the Lag Screw from any medial migration.

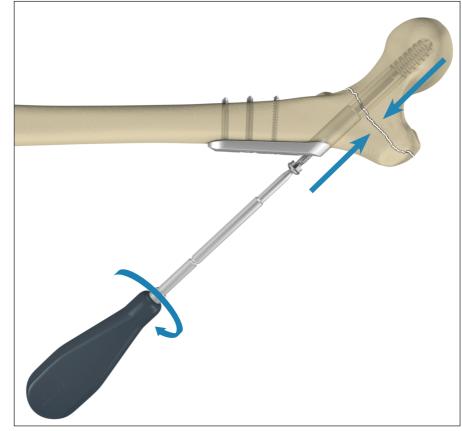


Fig. 50

One-Step Insertion Option, continued

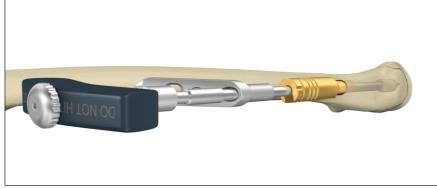


Fig. 48

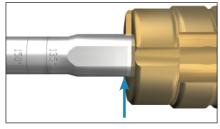


Fig. 49

Stop inserting the Lag Screw when the 135° ring reaches the One-Step Insertion Sleeve (when a 135° Hip plate is selected) Assemble the appropriate Hip Plate and the Lag Screw onto the One-Step Insertion Wrench.

For typical anatomy (135° head/ neck angle), advance the One-Step Insertion Wrench until the ring marked "135°" reaches the One-Step Insertion Sleeve.

For Valgus anatomy (150° head/ neck angle), advance the One-Step Insertion Wrench until the ring marked "150°" reaches the One-Step Insertion Sleeve. Other angled plates should be inserted proportionally between the marks.

Place the entire assembly over the Guide Pin and introduce it into the reamed hole (Fig. 47).

Advance the Lag Screw into the proximal femur to the predetermined depth and verify using image intensification.

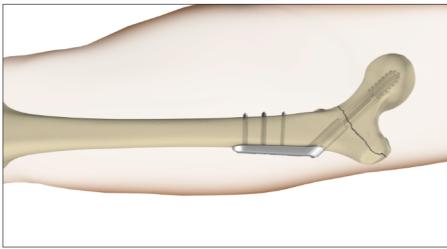
At the conclusion of screw insertion, the handle of the One-Step Insertion Instrument must be aligned with the long axis of the femoral shaft to allow proper keying of the Lag Screw to the plate barrel (Fig. 48).

Remove the One-Step Insertion Sleeve and advance the Hip Plate onto the Lag Screw shaft.

The Plate Impactor should be used to fully seat the plate.

Unscrew the Connecting Bolt and remove the One-Step Insertion Wrench from the back of the Lag Screw; remove the 2.8mm Guide Pin.

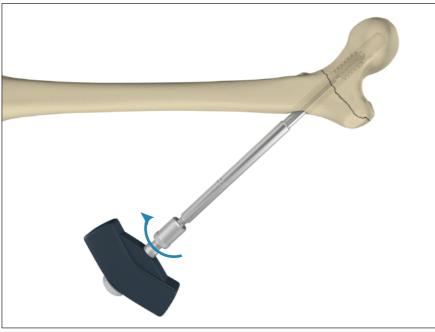
Depth of insertion of the Lag Screw is determined by observing the two depth indicator rings on the One-Step Inserter Wrench (Fig. 49). From here the operation is continued with either the axial stable fixation of the Hip Plate using Locking Inserts and Locking Screws or the standard fixation with Cortical Screws (See page 22).


Ordering Information

	REF	Description	
	Cases and Trays		
	Large Meta	Il Case *	
	902100 902101	Omega3 Large Metal Case, empty Omega3 Large Metal Case Lid	
	Basic Lag S	Screw Tray	
	902120 902121 902112 902116	Omega3 Basic Lag Screw Tray, empty Omega3 Basic Lag Screw Lid Omega3 Basic Silicone Mat Omega3 Cortical Screw Rack	
	Instrumen	ts for Basic Lag Screw Set **	
	700358	Drill Bit Ø 3.2mm x 145mm	
4 <u></u>	702822	Drill Guide Handle	
	702840	Drill Sleeve Ø 3.2mm, Neutral	
	702844	Screwdriver Hex 3.5mm	
	702878	Depth Gauge Assembly	
•	704001	Plate Impactor Assembly	
	704004	Connecting Bolt	
	704005	Combination Reamer Assembly, Standard (3 pieces)	
	704007	Lag Screw Tap, Large AO Fitting	
	704008	Lag Screw Tap Sleeve	
	704009	Lag Screw Adapter Assembly	
	704010	Lag Screw Depth Gauge	
****	704013	Fixed Angle Guide 135°	

^{*} The Large Metal Case (REF 902100) with Lid (REF 902101) allows to store two trays, e.g. a Basic Lag Screw Tray and an Optional Locking Tray or a Basic Lag Screw Tray and an Optional Instrument Tray.

^{**} Instruments may be stored in the Basic Lag Screw Tray (REF 902120). It is available with Lid (REF 902121), a Cortical Screw Rack (REF 902116) if non-sterile Cortical Screws are used and a Silcone Mat (REF 902112) for the auxiliary bin.


Closing the Wound

Closure of the wound is done in layers, closing separately the fascia of the vastus lateralis muscle and the facia lata. Carefully reapproximate the subcutaneous tissue and the skin (Fig. 51).

Fig. 51

Implant Removal

Should the need arise for hardware removal, the Lag Screw is extracted after removal of the Hip Plate through use of the Large T-Handle connected to the Lag Screw Inserter and the Connecting Bolt. The T-Handle is turned counterclockwise (Fig. 52).

Note: A guide wire can be placed into the screw to aid in alignment of the T-Handle.

Lag Screw

Fig. 52

Lag Screw Removal Assembly

Assemble the Large T-handle to the Lag Screw Inserter as described in instruction above.

The Connecting Bolt is inserted through the Large T-handle and threaded in to the Lag Screw.

Lag Screw Inserter

Connecting Bolt

Large T-Handle

33

Ordering Information

^{***} Locking instruments may be stored in the Optional Locking Instrument Tray (REF 902130). It is available with Lid (REF 902131), a Screw Rack (REF 902115) if non-sterile Locking Screws are used and a Silcone Mat (REF 902112) for the auxiliary bin.

Ordering Information

	REF I	Description		
Instruments** for Basic Lag Screw Set – Continued				
	704020	Elastosil _a T-Handle, Large AO Fitting		
	704021	Lag Screw Inserter, Large AO Fitting		
	704022	Inserter Sleeve		
C	704026	Cleaning Stylet, Ø 2.8mm		
	Guide Wires			
	704011S	Guide Wire Ø 2.8mm x 230mm, CoCr, Threaded Tip, Sterile		
	704012S	Guide Wire, Quick Coupling, Ø 2.8mm x 230mm, CoCr, Threaded Tip, Sterile		

** Instruments may be stored in the Basic Lag Screw Tray (REF 902120). It is available with Lid (REF 902121), a Cortical Screw Rack (REF 902116) if non-sterile Cortical Screws are used and a Silcone Mat (REF 902112) for the auxiliary bin.

Omega3 KEYED Hip-Plate, Standard Barrel

Stainless Steel REF	Holes	Angle	Length mm
597002S	2	130°	47
597003S	3	130°	63
597004S	4	130°	79
597005S	5	130°	95
597006S	6	130°	111
597008S	8	130°	143
597010S	10	130°	175
597012S	12	130°	207
597022S	2	135°	47
597023S	3	135°	63
597024S	4	135°	79
597025S	5	135°	95
597026S	6	135°	111
597028S	8	135°	143
597030S	10	135°	175
597032S	12	135°	207
597042S	2	140°	47
597043S	3	140°	63
597044S	4	140°	79
597045S	5	140°	95
597046S	6	140°	111
597048S	8	140°	143
597050S	10	140°	175
597052S	12	140°	207
597062S	2	145°	47
597063S	3	145°	63
597064S	4	145°	79
597065S	5	145°	95
597066S	6	145°	111
597068S	8	145°	143
597070S	10	145°	175
597072S	12	145°	207
597082S	2	150°	47
597083S	3	150°	63
597084S	4	150°	79
597085S	5	150°	95
597086S	6	150°	111
597088S	8	150°	143
597090S	10	150°	175
597092S	10	150°	207

Omega3 KEYED Hip-Plate, Short Barrel

Stainless Steel REF	Holes	Angle	Length mm
597202S	2	130°	47
597203S	3	130°	63
597204S	4	130°	79
597205S	5	130°	95
597212S	2	135°	47
597213S	3	135°	63
597214S	4	135°	79
5972155	5	135°	95
597222S	2	140°	47
597223S	3	140°	63
597224S	4	140°	79
5972258	5	140°	95
597232S	2	145°	47
597233S	3	145°	63
597234S	4	145°	79
5972358	5	145°	95
597242S	2	150°	47
5972438	3	150°	63
597244S	4	150°	79
5972458	5	150°	95

Note: Omega3 Hip Plates available Sterile only

Special Order Items

Ordering Information

REF Description		
Optional Instrument Tray		
902135 902136 902113	Omega3 Optional Instrument Tray, empty Omega3 Optional Instrument Lid Omega3 Optional Instrument Silicone Mat	
Optional Ir	struments****	
700359	Drill Bit Ø 4.5mm x 145mm	
702402	Tissue Protection Sleeve, Ø4.5mm / Ø6.5mm	
702634	Large AO to Hall Coupling	
 702773	Tap Ø 5.0mm x 140mm, 5.0mm Locking Set, AO Fitting	
702808	Tap Ø4.5mm x 145mm, AO Fitting	
702809	Tap Ø6.5mm x 145mm, AO Fitting	
702823	Drill Sleeve Ø3.2mm, Compression	
702853	Screwdriver Hex 3.5mm, AO Fitting	
702863	Holding Sleeve for Screwdrivers	
702918	Soft Tissue Spreader, 5.0mm Locking Set	
704002	One-Step Insertion Wrench	
704003	One-Step Insertion Sleeve	
704014	Variable Angle Guide, Modular	
704019	Guide Pin Replacement Instrument	
704025	Drill Sleeve Ø 3.2mm, Supracondylar	
704205	95° Angle Guide for Supracondylar Plate	
704006-20	Barrel Reamer Assembly, Short	
704001-1	Plate Impactor Head	
900106	Screw Forceps	

**** Optional instruments may be stored in the Optional Instrument Tray (REF 902135). It is available with Lid (REF 902136) and Silcone Mat (REF 902113)

Standard Lag Screw Ø13mm

1

Stainless Steel REF	Length mm	
3362-5-050	50	
3362-5-055	55	
3362-5-060	60	
3362-5-065	65	
3362-5-070	70	
3362-5-075	75	
3362-5-080	80	
3362-5-085	85	
3362-5-090	90	
3362-5-095	95	
3362-5-100	100	
3362-5-105	105	
3362-5-110	110	
3362-5-115	115	
3362-5-120	120	
3362-5-125	125	
3362-5-130	130	

Super Lag Screw Ø15mm

	Stainless Steel REF	Length mm	
333333	3362-8-050	50	
	3362-8-055	55	
	3362-8-060	60	
	3362-8-065	65	
	3362-8-070	70	
	3362-8-075	75	
	3362-8-080	80	
	3362-8-085	85	
	3362-8-090	90	
	3362-8-095	95	
	3362-8-100	100	
	3362-8-105	105	
	3362-8-110	110	
	3362-8-115	115	
	3362-8-120	120	
	3362-8-125	125	
	3362-8-130	130	

Compression Screw

C	Stainless Steel REF	Length mm
	596001S	32.3

Omega3 KEYLESS Hip-Plate, Standard Barrel

Stainless Steel REF	Holes	Angle	Length mm
597102S	2	130°	47
597103S	3	130°	63
597104S	4	130°	79
597105S	5	130°	95
597106S	6	130°	111
597108S	8	130°	143
597110S	10	130°	175
597112S	12	130°	207
5971228	2	135°	47
5971238	3	135°	63
597124S	4	135°	79
5971258	5	135°	95
597126S	6	135°	111
597128S	8	135°	143
597130S	10	135°	175
597132S	12	135°	207
597142S	2	140°	47
597143S	3	140°	63
597144S	4	140°	79
5971458	5	140°	95
597146S	6	140°	111
597148S	8	140°	143
597150S	10	140°	175
597152S	12	140°	207
597162S	2	145°	47
597163S	3	145°	63
597164S	4	145°	79
5971658	5	145°	95
597166S	6	145°	111
597168S	8	145°	143
597170S	10	145°	175
597172S	12	145°	207
597182S	2	150°	47
597183S	3	150°	63
597184S	4	150°	79
597185S	5	150°	95
597186S	6	150°	111
597188S	8	150°	143
597190S	10	150°	175
597192S	12	150°	207

Omega3 KEYLESS Hip-Plate, Short Barrel

Stainless Steel REF	Holes	Angle	Length mm
597254S	4	130°	79
5972558	5	130°	95
597264S	4	135°	79
5972658	5	135°	95
597274S	4	140°	79
5972758	5	140°	95
597284S	4	145°	79
5972855	5	145°	95
597294S	4	150°	79
5972958	5	150°	95

Special Order Items

Cancellous Screws ø6.5mm – 16mm thread

******	Stainless Steel REF	Length mm
	341030	30
	341035	35
	341040	40
	341045	45
	341050	50
	341055	55
	341060	60
	341065	65
	341070	70
	341075	75
	341080	80
	341085	85
	341090	90
	341095	95
	341100	100
	341105	105
	341110	110
	341115	115
	341120	120
	341125	125
	341130	130

Asnis III Cannulated Screws ø6.5mm, Thread Length 20mm

*******	Stainless Steel REF	Length mm
	3260408	40
	326045S	45
	326050S	50
	326055S	55
	326060S	60
	326065S	65
	326070S	70
	3260755	75
	326080S	80
	3260855	85
	326090S	90
	3260955	95
	326100S	100
	326105S	105
	326110S	110
	3261155	115
	3261205	120

Cancellous Screws ø6.5mm - 32mm thread

 Stainless Steel REF	Length mm
342045	45
342050	50
342055	55
342060	60
342065	65
342070	70
342075	75
342080	80
342085	85
342090	90
342095	95
342100	100
342105	105
342110	110
342115	115
342120	120
342125	125
342130	130

Asnis III Cannulated Screws ø6.5mm, Thread Length 40mm

Stainless Steel REF	Length mm
326255\$	55
3262608	60
3262658	65
3262708	70
3262758	75
326280S	80
326285S	85
326290S	90
3262958	95
326300S	100
326305S	105
326310S	110
326315S	115
326320S	120

Cancellous Screws ø6.5mm – Fully threaded

Asnis III Cannulated Screws ø6.5mm, Fully Threaded

************	Stainless Steel REF	Length mm	 Stainless Steel REF	Length mm
	343020	20	326430S	30
	343025	25	326435S	35
	343030	30	326440S	40
	343035	35	3264458	45
	343040	40	3264508	50
	343045	45	3264558	55
	343050	50	326460S	60
	343055	55	3264658	65
	343060	60	326470S	70
	343065	65	3264758	75
	343070	70	326480S	80
	343075	75	3264858	85
	343080	80	3264908	90
	343085	85	3264958	95
	343090	90	326500S	100
	343095	95	3265058	105
	343100	100	3265108	110
	343105	105	3265158	115
	343110	110	3265208	120
	343115	115	3265258	125
	343120	120	3265308	130
	343125	125		
	343130	130		

Note: For Sterile, add 'S' to REF of Cancellous Screws;

Asnis III Cannulated Screws are available Sterile only.

Cortical Screws ø4.5mm, Self Tapping, Hex 3.5mm Stainlass Staal

Locking Screws ø5.0mm, Self Tapping, T20 Drive

 Stainless Steel REF	Length mm	Stainless Steel REF	Length mm
340614	14	 370314	14
340616	16	370316	16
340618	18	370318	18
340620	20	370320	20
340622	22	370322	22
340624	24	370324	24
340626	26	370326	26
340628	28	370328	28
340630	30	370330	30
340632	32	370332	32
340634	34	370334	34
340636	36	370336	36
340638	38	370338	38
340640	40	370340	40
340642	40	370342	40
340644	42	370344	44
340646	46	370346	46
340648	40	370348	40
340650	40 50	370350	48 50
340652	52	370355	55
	54	370360	55 60
340654			
340655	55	370365	65
340656	56	370370	70
340658	58	370375	75
340660	60	370380	80
340662	62	370385	85
340664	64	370390	90
340665	65	370395	95
340666	66		
340668	68	Screw lengths 30 – 60mm	fit into
340670	70		
340672	72	Locking Screw Rack (RE	F 902115)
340674	74		
340675	75		
340676	76		
340678	78		
340680	80		
340685	85		
340690	90		
340695	95		
340700	100		
340705	105		
340710	110		

Screw lengths 30 - 60mm fit into Cortical Screw Rack (REF 902116)

5.0mm Locking Insert

Stainless Steel

Diameter

14x8.5

REF mm

370003 Locking Inserts fit into Locking Screw Rack (REF 902115)

Notes

Notes

stryker

Joint Replacements

Trauma, Extremities & Deformities

Craniomaxillofacial

Spine

Biologics

Surgical Products

Neuro & ENT

Interventional Pain

Navigation

Endoscopy

Communications

Imaging

Patient Handling Equipment

EMS Equipment

Stryker GmbH Bohnackerweg 1 CH-2545 Selzach Switzerland

www.stryker.com

The information presented in this brochure is intended to demonstrate a Stryker product. Always refer to the package insert, product label and/or user instructions before using any Stryker product. Surgeons must always rely on their own clinical judgment when deciding which products and techniques to use with their patients. Products may not be available in all markets. Product availability is subject to the regulatory or medical practices that govern individual markets. Please contact your Stryker representative if you have questions about the availability of Stryker products in your area.

Stryker Corporation or its subsidiary owns, uses or has applied for the following trademarks: Stryker, Omega, Asnis. Swemac Orthopaedics AB owns the following trademark: Hansson. Wacker-Chemie GmbH owns the following trademark: Elastosil

Content ID: OMG-ST-2, 11-2015 (Former Literature Number: 982306)

Copyright © 2015 Stryker